
ジョイントコネクター疲労試験

目的ジョイントコネクターの繰り返しの伸縮に対する疲れ強さを調べる。

供試材

ジョイントコネクターの規格はR=25mmの断面で構 (図-1) 成されているが、得られた結果の数値を比較するた \emptyset , $\mathbb{R}=14$ mm, $\mathbb{R}=18$ mm, \mathbb{C} $\mathbb{R}=25$ mm $\mathbb{O}3$ 種類用意し試験を行なった。

疲労試験機

|試験機は、東京衡機・シェンク製「ユニパルス |。本機は油圧サーボ制御方式の疲労試験機で、動的な引張圧縮試験の 他に静的な引張圧縮試験も可能である。

[表-1]「ユニパルス」の主な仕様

荷 重	動的最大荷重:±8tonf、静的最大荷重:±10tonf
静的ラムストローク	100mm
試験周波数範囲	0.01~50Hz

制御波形	正弦波、三角波、方形波、台形波
制御方式	荷重、変位
最大供給圧力	280kg f/cm ²

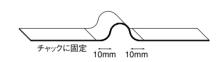
試験項目および方法 1. 試験片の取り付け

各タイプともチャック部への取り付け箇所は、凸部から10mmの位置をチ ャックによる固定。

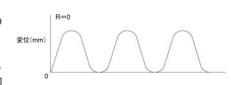
2. 変位量

試験条件としては厳しい「0~引張(軸力R=0) |の繰り返しで、変位量(S) は+2mm、+4mm、+6mmの3条件で破断までの繰り返し数(N)を求め、 S~N曲線を作成する。

熱膨張による変位量を(ℓ×△t×β)より計算すると(4,000mm×60°C× 0.2313×10⁴)5.5mmとなり、変位量6mmがほぼ同条件に該当する。

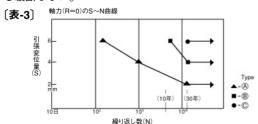

3. 制御方法

変位制御で行ない、制御波形は、正弦波(サイン波)、周波数は試験片の 形状、変位量に応じて1~5ヘルツの範囲で可変。


4. 破断の回数

試験を変位制御で行なうための試験片が、破断しかかってから破断する までにさらに10~50回ぐらい回数を要するため、変位を負荷した時の初 期荷重を読みとり、その値が1/2になった時の回数を破断回数とした。

[図-2]



〔表-2〕

結果および考察

試験条件と破断回数を[表-4]に示した。また、[表-3]には Ω \sim Ω 各供試材の $S\sim$ N曲線を示した。Rが小さい Ω では、 6mmの変位が201回(7ヶ月弱)で破断し、®では3.945回(11年弱)で破断する。しかし、©では10.950回(30年)以上で も破断しない。

〔表-4〕

試験条件と破断回数

_	変位量	6mm				4mm				2mm			
形	状 \	1	2	3	\bar{x}	1	2	3	X	1	2	3	X
	(A)	200	192	212	201	986	909	1,010	989	~	~	_	~
	B	4,000	3,890	_	3,945	}	~	_	`				
	0	~	~		~								

※ ~:破断しない。

まとめ

ジョイントコネクターの形状(A、B、C)について2~6mmの変位を負荷し、0~引張りの疲労試験を行ない、以下の結果 を得た。

- ●熱膨張による変位量を6mmと考えた場合、@は7ヶ月弱で破断し、®は10年で破断する。 しかし@は30年でも破断
- ●笠木、ジョイントコネクターを施工する季節により熱膨張収縮が変動するため、今回の結果をそのまま疲れ強さとするこ とはできないが、今回の試験条件はかなり厳しいものであり、実際にはもう少し疲労の強さは高くなると思われる。